행위

"논어 구절로 알아보는 정치인의 겉과 속"의 두 판 사이의 차이

red

(탐구 결과)
(변수 설명)
5번째 줄: 5번째 줄:
 
===데이터 분석===
 
===데이터 분석===
 
====변수 설명====
 
====변수 설명====
 +
수집한 데이터를 이용하여 네트워크를 형성하였다. Statement(발언), Section(구절), Person(정치인), Month(월), Year(년), Expression(인용구), Chapter(장), Event(사건), Party(정당)을 노드로 삼았다. 각 노드별 속성 중 주목할 만한 부분은 다음과 같다.
 +
 +
 +
====='''Statement'''=====
 +
{| {{table}}
 +
| align="center" style="background:#f0f0f0;"|'''노드 명'''
 +
| align="center" style="background:#f0f0f0;"|'''속성'''
 +
| align="center" style="background:#f0f0f0;"|'''설명'''
 +
|-
 +
| Statement (발언)||contentcontext (내용 맥락)||발화 내용에 따라 선거, 비선거 - 사회적 문제, 비선거 - 정책적 대립, 비선거 - 개인 신변 논란, 비선거 - 국회 활동, 격려 / 각오 / 방향제시, 행태 비판으로 구분함.
 +
|-
 +
| ||formcontext (형식 맥락)||발화 형식에 따라 SNS, 논평 / 보도자료, 즉석발언, 연설 / 브리핑 / 기자회견, 기념사 / 축사, 인터뷰로 구분함.
 +
|-
 +
|
 +
|}
 +
 +
기존 Event 노드의 속성이었던 context(맥락)를 내용 맥락과 형식 맥락으로 구분하는 과정에서 같은 사건에 대한 발언이라도 형식이 다를 수 있다는 점으로부터 내용 맥락, 형식 맥락이 Event 노드가 아닌 Statement 노드에 위치해야 한다고 판단하여 Event 노드의 context 속성을 삭제하고 Statement 노드에 contentcontext, formcontext 속성을 추가하였다.<br/>
 +
 +
우선 내용 맥락의 경우, 실질적이거나 구체적인 사건, 정책에 관한 내용인지 여부에 따라 두 가지로 분류하였다. 구체적인 사건, 정책에 관한 내용일 경우 선거와 비선거로 분류하였으며, 비선거 내에서도 그 내용에 따라 사회적 문제, 정책적 대립, 개인 신변 논란, 국회활동으로 구분하였다. 이때 추미애 장관 아들 병역 문제나 최순실 게이트 등의 사건들을 개인 신변 논란과 사회적 문제로 구분할 때 단순히 물의를 일으킨 것은 개인 신변 논란, 물의를 넘어 쟁점이 될 만큼 큰 이슈가 되었을 경우 사회적 문제로 분류하였다. 구체적인 사건, 정책에 관한 내용이 아닐 경우 그 내용이 긍정적인지 여부에 따라 격려 / 각오 / 방향제시와 행태 비판으로 구분하였다.<br/>
 +
 +
형식 맥락의 경우, 크게 전달 매체에 따라 말과 글, 두 가지로 분류하였다. 글의 경우 정식 문서 여부에 따라 논평 / 보도 자료와 SNS로 나누었고, 말의 경우 원고가 준비된 발언과 그렇지 않은 즉석 발언으로 분류하였다. 또한 원고가 준비된 발언들을 발언 기회나 환경과 발언 내용의 선후 관계에 따라 환경이 우선일 경우와 내용이 우선일 경우로 구분하였다. 전자의 경우 그 내용에 따라 기념사 / 축사와 인터뷰로 구분하였고, 후자는 연설 / 브리핑 / 기자회견이라는 하나의 분류로 묶었다.<br/>
 +
 +
====='''Section'''=====
 +
 
====온톨로지====
 
====온톨로지====
 
====Cypher Query====
 
====Cypher Query====

2020년 11월 29일 (일) 17:45 판

탐구의 목적

탐구의 대상

탐구 방법

데이터 수집

데이터 분석

변수 설명

수집한 데이터를 이용하여 네트워크를 형성하였다. Statement(발언), Section(구절), Person(정치인), Month(월), Year(년), Expression(인용구), Chapter(장), Event(사건), Party(정당)을 노드로 삼았다. 각 노드별 속성 중 주목할 만한 부분은 다음과 같다.


Statement
노드 명 속성 설명
Statement (발언) contentcontext (내용 맥락) 발화 내용에 따라 선거, 비선거 - 사회적 문제, 비선거 - 정책적 대립, 비선거 - 개인 신변 논란, 비선거 - 국회 활동, 격려 / 각오 / 방향제시, 행태 비판으로 구분함.
formcontext (형식 맥락) 발화 형식에 따라 SNS, 논평 / 보도자료, 즉석발언, 연설 / 브리핑 / 기자회견, 기념사 / 축사, 인터뷰로 구분함.

기존 Event 노드의 속성이었던 context(맥락)를 내용 맥락과 형식 맥락으로 구분하는 과정에서 같은 사건에 대한 발언이라도 형식이 다를 수 있다는 점으로부터 내용 맥락, 형식 맥락이 Event 노드가 아닌 Statement 노드에 위치해야 한다고 판단하여 Event 노드의 context 속성을 삭제하고 Statement 노드에 contentcontext, formcontext 속성을 추가하였다.

우선 내용 맥락의 경우, 실질적이거나 구체적인 사건, 정책에 관한 내용인지 여부에 따라 두 가지로 분류하였다. 구체적인 사건, 정책에 관한 내용일 경우 선거와 비선거로 분류하였으며, 비선거 내에서도 그 내용에 따라 사회적 문제, 정책적 대립, 개인 신변 논란, 국회활동으로 구분하였다. 이때 추미애 장관 아들 병역 문제나 최순실 게이트 등의 사건들을 개인 신변 논란과 사회적 문제로 구분할 때 단순히 물의를 일으킨 것은 개인 신변 논란, 물의를 넘어 쟁점이 될 만큼 큰 이슈가 되었을 경우 사회적 문제로 분류하였다. 구체적인 사건, 정책에 관한 내용이 아닐 경우 그 내용이 긍정적인지 여부에 따라 격려 / 각오 / 방향제시와 행태 비판으로 구분하였다.

형식 맥락의 경우, 크게 전달 매체에 따라 말과 글, 두 가지로 분류하였다. 글의 경우 정식 문서 여부에 따라 논평 / 보도 자료와 SNS로 나누었고, 말의 경우 원고가 준비된 발언과 그렇지 않은 즉석 발언으로 분류하였다. 또한 원고가 준비된 발언들을 발언 기회나 환경과 발언 내용의 선후 관계에 따라 환경이 우선일 경우와 내용이 우선일 경우로 구분하였다. 전자의 경우 그 내용에 따라 기념사 / 축사와 인터뷰로 구분하였고, 후자는 연설 / 브리핑 / 기자회견이라는 하나의 분류로 묶었다.

Section

온톨로지

Cypher Query

탐구 결과

발화 내용별 분석

발화 형식별 분석

정당별 분석

결론 및 토의